The aerosol in Cairo (Egypt) as seen by AERONET and MODIS

S.C. Alfaro, M. El-Metwally, B. Chatenet, and M.M. Abdel Wahab

LISA-UMR CNRS 7583, Université de Paris Est Créteill, Crétei, France.

Physics Department, Faculty of Science at Port-Said, Suez Canal University, Port Said, Egypt.

Astronomy and Meteorology Department, Faculty of Science, Cairo University, Giza, Egypt.

Pop: >16 millions

Desert Dust

Cairo Aerosol CHaracterization Experiment (CACHE) Oct. 2004 – Mar. 2006

- ...

Surface measurements

Vertically integrated measurements

CIMEL sun-tracking photometer (AERONET)

MODIS (AQUA & TERRA)

Sun-tracking photometer (AERONET)

14 months of continuous measurements, more than 750 quality assured (level 2) point data

DIRECT MEASUREMENTS:

- AOD @ 440,675,870, 940 and 1022nm
- Angström exponent
- Diffuse sky radiance in the solar almucantar (4 λ)

INVERSION PRODUCTS (level 2 quality assured):

- size-resolved concentration
- refractive index
- optical properties (SSA, g)
- radiative forcing (F_{TOA} and F_{BOA})

MODIS

2000-2008 (2946 point data for Cairo) (C005-Level 2 data)

Reflectance measurements

AEROSOLS INVERSION PRODUCTS:

- AOD @ 470, 550, 560, 940 and 1022mm

Angström exponent (470/660nm)

AOD, Angström exponent, SSA

Yearly averaged SSA: Comparison with the data of Dubovik et al. (2002).

Correlation between $\boldsymbol{\alpha}$ and AOD

(El Metwally, et al., 2008)

Seasonal variations

October , April.

Month averages

Influence of the aerosol composition on the radiative Forcing Efficency (@TOA and BOA)

Contribution of the Desert dust and Biomass burning components to the month averages of the BOA radiative forcing (El Metwally et al., 2010)

Month	RF _{others}	RF _{DDM}	RF _{BBM}
Jan	63%	35%	1%
Feb	62%	38%	0%
Mar	51%	49%	0%
Apr	47%	53%	0%
Мау	51%	26%	24%
June	45%	41%	14%
Jul	55%	19%	26%
Aug	55%	22%	23%
Sept	49%	33%	18%
Oct	42%	25%	33%
Nov	59%	21%	20%
Dec	66%	17%	16%
	54±8%	32±12%	15±12%

(El Metwally et al., 2010)

All-year round, Desert Dust is a significant component of the aerosol in Cairo

Biomass burning is more seasonal

Comparison with MODIS (and correcting MODIS for Cairo conditions)

Correcting the MODIS-derived AOD550

Results of the correction

(El Metwally, et al., 2010)

Spectral dependence of the AOD (Angström exponent)

MODIS

AERONET/MODIS

Daily and monthly averaged values of the Ångström exponent derived from the MODIS radiances measurements performed at 470 and 670nm between 2000 and 2008.

Comparison of the monthly averages of the AERONET and MODIS Angstrom exponents

Conclusions

The aerosol in Cairo is a mixture of 3 main components:

- Background pollution
- Desert Dust
- Biomass burning

A strong aerosol variability, which is due to:

- meteorological factors (rain, insolation)
- the activation of sources external to the city
 - natural (Desert Dust)
 - anthropic (Biomass Burning)

MODIS AODs can be corrected for achieving long time series, but there seems to be a problem with the aerosol models

THANK YOU.....

Seasonal variations

Statistical distribution of the Radiative Forcing (all data)

